GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies
نویسندگان
چکیده
MOTIVATION The increasing availability of second-generation high-throughput sequencing (HTS) technologies has sparked a growing interest in de novo genome sequencing. This in turn has fueled the need for reliable means of obtaining high-quality draft genomes from short-read sequencing data. The millions of reads usually involved in HTS experiments are first assembled into longer fragments called contigs, which are then scaffolded, i.e. ordered and oriented using additional information, to produce even longer sequences called scaffolds. Most existing scaffolders of HTS genome assemblies are not suited for using information other than paired reads to perform scaffolding. They use this limited information to construct scaffolds, often preferring scaffold length over accuracy, when faced with the tradeoff. RESULTS We present GRASS (GeneRic ASsembly Scaffolder)-a novel algorithm for scaffolding second-generation sequencing assemblies capable of using diverse information sources. GRASS offers a mixed-integer programming formulation of the contig scaffolding problem, which combines contig order, distance and orientation in a single optimization objective. The resulting optimization problem is solved using an expectation-maximization procedure and an unconstrained binary quadratic programming approximation of the original problem. We compared GRASS with existing HTS scaffolders using Illumina paired reads of three bacterial genomes. Our algorithm constructs a comparable number of scaffolds, but makes fewer errors. This result is further improved when additional data, in the form of related genome sequences, are used. AVAILABILITY GRASS source code is freely available from http://code.google.com/p/tud-scaffolding/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Scaffolding low quality genomes using orthologous protein sequences
MOTIVATION The ready availability of next-generation sequencing has led to a situation where it is easy to produce very fragmentary genome assemblies. We present a pipeline, SWiPS (Scaffolding With Protein Sequences), that uses orthologous proteins to improve low quality genome assemblies. The protein sequences are used as guides to scaffold existing contigs, while simultaneously allowing the g...
متن کاملGeneration of physical map contig-specific sequences
Rapid advances of the next-generation sequencing technologies have allowed whole genome sequencing of many species. However, with the current sequencing technologies, the whole genome sequence assemblies often fall in short in one of the four quality measurements: accuracy, contiguity, connectivity, and completeness. In particular, small-sized contigs and scaffolds limit the applicability of wh...
متن کاملWhole-Genome Restriction Mapping by “Subhaploid”-Based RAD Sequencing: An Efficient and Flexible Approach for Physical Mapping and Genome Scaffolding
Assembly of complex genomes using short reads remains a major challenge, which usually yields highly fragmented assemblies. Generation of ultradense linkage maps is promising for anchoring such assemblies, but traditional linkage mapping methods are hindered by the infrequency and unevenness of meiotic recombination that limit attainable map resolution. Here we develop a sequencing-based "in vi...
متن کاملGenome Sequencing and Assembly by Long Reads in Plants
Plant genomes generated by Sanger and Next Generation Sequencing (NGS) have provided insight into species diversity and evolution. However, Sanger sequencing is limited in its applications due to high cost, labor intensity, and low throughput, while NGS reads are too short to resolve abundant repeats and polyploidy, leading to incomplete or ambiguous assemblies. The advent and improvement of lo...
متن کاملScaffMatch: Scaffolding Algorithm Based on Maximum Weight Matching
MOTIVATION Next-generation high-throughput sequencing has become a state-of-the-art technique in genome assembly. Scaffolding is one of the main stages of the assembly pipeline. During this stage, contigs assembled from the paired-end reads are merged into bigger chains called scaffolds. Because of a high level of statistical noise, chimeric reads, and genome repeats the problem of scaffolding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 28 11 شماره
صفحات -
تاریخ انتشار 2012